Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 13(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427427

RESUMO

The 53rd Ontario Ecology, Ethology, and Evolution Colloquium (OE3C 2023) took place at Western University (London, Canada) on 25-27 May 2023, attracting 160 participants. This Meeting Review aims not only to recapitulate what was discussed during the event, but also to provide a brief synthesis of how biologists can move forward. The event was organised and run by graduate students and postdoctoral researchers from the Department of Biology at Western University. With three international keynote speakers, seventy talks, and fifty poster presentations, the OE3C 2023 spanned a wide range of contemporary research in Ecology, Ethology, and Evolution ("the 3 E's"). The colloquium theme was "Surviving the Anthropocene: future steps for the 3 E's under pressing planetary issues", which was complemented by illustrations depicting the fauna and flora of the "Canadian Anthropocene". Participants discussed what biologists and researchers can do regarding future climate and environmental catastrophes. The meeting culminated in a panel discussion comprising three climate change specialists who examined topics such as the Anthropocene and the Great acceleration, the living planet index, and carbon bombs. Although not exhaustive, these topics served as a starting point for the necessary discussions about how biologists can contribute to the fight for the survival of life on Earth.


Assuntos
Mudança Climática , Etologia , Humanos , Canadá
2.
Ecol Appl ; 31(4): e02317, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33636021

RESUMO

Grassland ecosystems account for approximately 40% of terrestrial biomes globally. These communities are characterized by a large allocation to belowground biomass, often exceeding its aboveground counterpart. However, this biomass investment cannot be entirely attributed to the acquisitive function of roots. Grassland plants also allocate to non-acquisitive, stem-derived, belowground organs, such as rhizomes. These organs are responsible for the key plant functions of space occupancy, resprouting after damage, and seasonal rest. However, biomass investment to rhizomes has rarely been studied. Here we gathered community-level aboveground and rhizome biomass data for 52 temperate grasslands in Czech Republic (Central Europe), differing in management intensity. We found that rhizome biomass scaled linearly with aboveground biomass, and more intensive management disproportionally (negatively) affected rhizome biomass. This finding may have important implications for the persistence of temperate grassland plants and their provision of ecosystem services (e.g., soil carbon sequestration, soil stabilization) in relation to changing environments.


Assuntos
Ecossistema , Pradaria , Biomassa , Europa (Continente) , Rizoma , Solo
3.
Ann Bot ; 126(5): 873-881, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32478386

RESUMO

BACKGROUND AND AIMS: Herbaceous plants can survive periods of prolonged freezing as below-ground structures or seed, which can be insulated from cold air by soil, litter or snow. Below-ground perennial structures vary in both form and their exposure to soil frost, and this structural variation thus may be important in determining the responses of plant communities to frost stress. METHODS: We conducted a suite of snow removal experiments in a northern temperate old field over 3 years to examine the relative freezing responses of different plant functional groups based on below-ground perennation traits. A litter removal treatment was added in the third year. Species-level percentage cover data were recorded in May, June and September then pooled by functional group. KEY RESULTS: Snow removal decreased total plant cover, and this response was particularly strong and consistent among years for tap-rooted and rhizomatous species. The snow removal responses of cover for plants with root buds and new recruits from seed varied from positive to negative among years. The cover of rootstock plants consistently increased in response to snow removal. Rhizomatous species were generally the most vulnerable to litter removal. CONCLUSIONS: This study is the first to explore the effects of variation in frost severity on the responses of different plant perennation trait functional groups. The responses of herbaceous species to frost may become increasingly important in northern temperate regions in the coming decades as a result of declining snow cover and increasing temperature variability. Our results reveal substantial variation in responses among perennation trait functional groups, which could drive changes in species abundance in response to variation in soil frost.


Assuntos
Neve , Solo , Congelamento , Plantas , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...